Non-Faradaic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors.

نویسندگان

  • Blake C Jacquot
  • Nini Muñoz
  • Darren W Branch
  • Edwin C Kan
چکیده

Electronic detection of the binding event between biotinylated bovine serum albumen (BSA) and streptavidin is demonstrated with the chemoreceptive neuron MOS (CnuMOS) device. Differing from the ion-sensitive field-effect transistors (ISFET), CnuMOS, with the potential of the extended floating gate determined by both the sensing and control gates in a neuromorphic style, can provide protein detection without requiring analyte reference electrodes. In comparison with the microelectrode arrays, measurements are gathered through purely capacitive, non-Faradaic interactions across insulating interfaces. By using a (3-glycidoxypropyl)trimethoxysilane (3-GPS) self-assembled monolayer (SAM) as a simple covalent link for attaching proteins to a silicon dioxide sensing surface, a fully integrated, electrochemical detection platform is realized for protein interactions through monotone large-signal measurements or small-signal impedance spectroscopy. Calibration curves were created to coordinate the sensor response with ellipsometric measurements taken on witness samples. By monitoring the film thickness of streptavidin capture, a sensitivity of 25ng/cm2 or 2A of film thickness was demonstrated. With an improved noise floor the sensor can detect down to 2ng/(cm2mV) based on the calibration curve. AC measurements are shown to significantly reduce long-term sensor drift. Finally, a noise analysis of electrochemical data indicates 1/f(alpha) behavior with a noise floor beginning at approximately 1Hz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid CMOS/memristive nanoelectronic circuit for programming synaptic weights

In this paper a hybrid circuit is presented which comprises nanoelectronic resistive switches based on the electrochemical memory effect (ECM) as well as devices from a standard 40nm-CMOS process. A closed ECM device model, which is based on device physics, was used for simulations allowing for a precise prediction of the expected I-V characteristics. The device is used as a non-volatile and/or...

متن کامل

Comparison of CMOS and PSP intraoral digital sensors in the diagnosis of secondary caries adjacent to amalgam restorations

Background and Aim: Considering the consequences of false positive (FP) and false negative (FN) diagnoses as well as the lack of information on the diagnostic ability of photostimulable phosphor plate (PSP) and complementary metal oxide semiconductor (CMOS) sensors in the detection of secondary caries, this study aimed to compare the diagnostic ability of these two sensors in the detection of s...

متن کامل

Amyloid Beta Detection by Faradaic Electrochemical Impedance Spectroscopy Using Interdigitated Microelectrodes

Faradaic electrochemical impedance spectroscopy (f-EIS) in the presence of redox reagent, e.g., [Fe(CN)₆]3-/4-, is widely used in biosensors owing to its high sensitivity. However, in sensors detecting amyloid beta (Aβ), the redox reagent can cause the aggregation of Aβ, which is a disturbance factor in accurate detection. Here, we propose an interdigitated microelectrode (IME) based f-EIS tech...

متن کامل

Lab-on-CMOS integration of microfluidics and electrochemical sensors.

This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter ...

متن کامل

Post-CMOS electrode formation and isolation for on-chip temperature-controlled electrochemical sensors

Introduction: Recent advances in protein-based biomimetic and bioelectronic interfaces on metal electrodes [1] generate an opportunity to form integrated electrochemical sensors that can simultaneously measure multiple analytes for a wide range of molecular analysis applications. The proteins within these biointerfaces show optimal sensitivity at different temperatures, typically between room t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2008